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ABSTRACT
Visual information shows to empower accurately named entity
recognition in short texts, such as posts from social media. Previ-
ous work on multimodal named entity recognition (MNER) often
regards an image as a set of visual objects, trying to explicitly align
visual objects and entities. However, these methods may suffer the
bias introduced by visual objects when they are not identical to
entities in quantity and entity type. Different from this kind of
explicit alignment, we argue that implicit alignment is effective in
optimizing the shared semantic space learning between text and
image for improving MNER. To this end, we propose a de-bias con-
trastive learning based approach for MNER, which studies modality
alignment enhanced by cross-modal contrastive learning. Specifi-
cally, our contrastive learning adopts a hard sample mining strategy
and a debiased contrastive loss to alleviate the bias of quantity and
entity type, respectively, which globally learns to align the feature
spaces from text and image. Finally, the learned semantic space
works with a NER decoder to recognize entities in text. Conducted
on two benchmark datasets, experimental results show that our
approach outperforms the current state-of-the-art methods.
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1 INTRODUCTION
As an important research direction of NER, multimodal named
entity recognition (MNER) has attracted more and more attention,
due to its research significance in multimodal deep learning and
wide applications, such as social media posts. It significantly extends
the conventional text-based NER by taking images as additional
inputs[2, 14, 23, 25–28]. The assumption is that visual information
in images can help classify the entity types in text, especially when
text semantics are ambiguous.

Figure 1: Three Examples of Multimodal Named Entity
Recognition in Social Media.

As a key of MNER, it is generally believed that explicit align-
ment can unearth the fine-grained correspondence between text
and image. As shown in Fig. 1.a, by observing the image containing
two people (visual objects), it is easy to classify the types of "Chris
Brown" and " Adele" (entities) in the text as "PER". However, such
explicit alignment will inevitably have problems when visual ob-
jects and entities are inconsistent in quantity or type. For example,
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in Fig. 1.b, there are many detected objects (n visual objects) in the
image, which makes it difficult to explicitly align them with the
"Bishop Chatard" and "Lawrence Central" (2 entities) in the text.
And in Fig. 1.c, it is expected to find some "people" ("PER" type)
in the image to align with "Jeremy Corbyn" or "David Cameron"
("PER" type) in the text, but there is a "cat" ("MISC" type) in the
image. Just like these examples, when there is no such precise cor-
respondence between text and image, it will bring difficulties for
the graph-based method by establishing the relationship between
entities and visual objects [26] , and the method of taking visual
objects as a semantic representation of image [2, 23, 28].

As we can see, recent studies in MNERmainly focus on capturing
various semantic correspondences between multimodal semantic
units (entities and visual objects). They consider leveraging de-
tected visual objects to help identify entities in the text by explicitly
aligning them. In such a case, these methods can work well when
the detected visual objects exactly correspond to the entities. As
a result, the bias caused by visual objects may mislead the recog-
nition of entities when the detected visual objects and entities are
inconsistent in quantity or type. According to our data analysis,
the inconsistency of quantity alone accounts for 85.58% and 84.04%
in two MNER datasets. It is necessary to propose a new multimodal
alignment method to address these biases to alleviate the bias from
visual objects.

Contrastive learning, as a recent popular self-supervised method,
has been widely used in many fields[3][4][13]. It can effectively
exploit the natural pairing relationship between text and image,
which can be used to enhance the multimodal latent semantic space
learning. The reasoning behind this is that contrastive learning can
narrow the semantic distance between positive samples and widen
the semantic distance between negative samples by constructing
positive and negative samples with different feature distributions.
Inspired by this inference, we try to optimize the learning of the
text-image shared latent semantic space by combining MNER with
a de-bias contrastive learning, in this way to effectively optimize
implicit alignment and alleviate the bias from visual objects for
better NER performance.

In this paper, we propose a novel de-bias contrastive learning
based approach, which combines MNER with cross-modal con-
trastive learning to alleviate the bias from visual objects for MNER
in social media posts. Specifically, we first introduce a multimodal
interaction module consisting of multilayer self-attention and cross-
modal attention to learn text-image shared latent semantic space. To
effectively alleviate the bias in quantity, we propose a visual object
density guided hard sample mining strategy to select text-image
pairs with high visual object density as hard samples. To effectively
alleviate the bias in entity type, we adopt a debiased contrastive loss
to replace standard contrastive loss, which can alleviate the bias
caused by negative samples with wrong types. Then, we combine
MNER with the above de-bias contrastive learning to optimize the
learning of the latent semantic space between visual and textual
representations. Finally, we exploit the textual representation in
semantic space with a NER decoder to perform entity labeling. Com-
pared with previous models, ours can effectively alleviate the bias
caused by visual objects in multimodal alignment from multiple
perspectives (quantity and entity type).

Our main contributions can be summarized as follows:

• We propose a de-bias contrastive learning based modal for
the task of MNER, which achieves multimodal implicit align-
ment by optimizing the learning of text-image shared latent
semantic space.
• We propose a novel de-bias contrastive learning, which com-
bines a hard sample mining strategy and adopts a debiased
contrastive loss. It aims at alleviating the bias caused by
visual objects in quantity and entity type.
• Conducted on the Twitter 2015 and 2017 datasets, the ex-
perimental results demonstrate that our proposed model
outperforms state-of-the-art methods.

2 RELATEDWORK
2.1 Multimodal NER
As multimodal data become increasingly popular on social media
platforms, NER in the social media domain has raised broad con-
cerns. The multimodal NER task was first explored by Zhang et
al.[27], Moon et al. [17], and Lu et al.[14] in the same period. They
take the approach of encoding the entire image, which implicitly
interacts the information of two modalities. As a typical implicit
alignment method, Yu et al.[25] propose a multimodal interaction
module to capture the inter-modality dynamics between words
and images. However, simple multimodal interaction will lead to
poor semantic alignment and failure to find latent semantic corre-
spondences. Thus, recent work began to study explicit alignment
methods in MNER. Chen et al. [2] introduced image attributes
and knowledge to help improve named entity extraction. Wu et
al.[23] and Zheng et al. [28] proposed to mine relations between
fine-grained visual objects and entities to predict. Similarly, Zhang
et al.[26] proposed using a unified multimodal graph to capture
various semantic relationships between words and visual objects.
However, these methods all focus on the visual objects in the image
and attempt to achieve explicit alignment by learning association
weights between entities and visual objects. Different from the
above methods, ours attempts to combine MNER with contrastive
learning to achieve implicit alignment by optimizing the learning
of text-image shared latent semantic space.

2.2 Contrastive Learning
Contrastive learning has become a rising domain because of its sig-
nificant success in various CV and NLP tasks. Several researchers
(Chen et al.[3]; Kim et al.[10]; Misra and Maaten[16]) proposed
to make the representations of the different augmentation of an
image agree with each other and showed positive results. The main
difference between these works is their various definition of image
augmentation. At the same time, researchers in the NLP domain
have also started to work on finding suitable augmentation for text
(Giorgi et al.[7]; Wu et al.[22]; Yang et al.[24]). However, a major
limitation of the above methods is that they are only uni-modal con-
trastive learning. Recently, with the rise of multimodal pre-trained
models, many studies have incorporated the multimodal contrastive
learning in their methods (Radford et al.[18]; Li et al.[13]; Li et
al.[12]). However, most of them directly use standard cross-modal
contrastive learning based on random samples or only perform data
augmentation based on text, which does not consider optimizing
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Figure 2: The Overall Architecture of Our De-bias Contrastive Learning based Approach. (Our approach achieves implicit
alignment and alleviates the bias of visual objects by combining MNER with a de-bias contrastive learning to optimize the
learning of the text-image shared latent semantic space)

from the visual objects, but this is exactly the difficulty we face
in MNER. Therefore, we propose a hard samples mining strategy
based on visual object density in the image and adopt a debiased
contrastive loss, so as to address the bias caused by visual objects
in multimodal alignment.

3 THE PROPOSED METHOD
In this section, we present a novel de-bias contrastive learning based
approach. Given text-image pairs, we aim to use visual information
in images to help recognize the words as predefined entity types.
Compared with the classic two-stream model in the multimodal
task, our model adds a de-bias contrastive learning module. The
overall architecture is shown in Figure 2. We will first introduce
the process of text and image embedding, and then detail the com-
ponents of the proposed de-bias contrastive learning. Finally, we
give a technical explanation of our decoder for NER.

3.1 Text and Image Embedding
3.1.1 Text Embedding. Due to the capability of giving different
representations for the same word in different contexts, same as
previous work[25][26], BERT[6] is chosen as our textual feature ex-
tractor to obtain contextualized representation. Then, to project the
textual representation into the same semantic space as the visual
representation, a projection head composed of linear transforma-
tion layer, Relu activation function layer and dropout layer is added
after BERT. Formally, let 𝑆 = (𝑠0, 𝑠1, ..., 𝑠𝑛−1) be the input text. As
shown in Figure 2, 𝑆 is fed to the text encoder consisting of BERT

and projection head to obtain the embedding of textual representa-
tionW = (w0,w1, ...,w𝑛−1), where w𝑖 ∈ 𝑅𝑑 is the contextualized
representation for 𝑠𝑖 .

3.1.2 Image Embedding. As one of the state-of-the-art CNNmodels
for image recognition, Residual Network (ResNet)[9] has shown its
capability to extract meaningful representations of input images.
Therefore, same as previous work[25][26], ResNet is chosen as our
visual feature extractor to obtain contextualized representation,
which will split each input image into 7×7 = 49 visual blocks with
the same size. Then, like textual feature extractor, a projection head
is used to project the visual representation into the same semantic
space as the textual representation. Specifically, the input image
𝑉 will be resized to 224 × 224 pixels and then input to the visual
encoder consisting of ResNet and projection head to obtain the
embedding of visual representation V = (v1, v2, ..., v49), where v𝑖
is the visual representation for the 𝑖-th visual block.

3.1.3 Multimodal Interaction (MMI) Module. To effectively learn
the textual representation that incorporates visual information and
the visual representation that incorporates textual information, a
multimodal interaction module is proposed, which stacks 𝐿 multi-
modal fusion layers to encode the input text-image pairs. At each
fusion layer, intra- and inter-modal fusions are sequentially con-
ducted to update the visual and textual representations. This way,
the final visual and textual representations simultaneously encode
the context within the same modality and the cross-modal semantic
information.
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Specifically, in the 𝑙-th fusion layer, both updates of textual rep-
resentationH(𝑙 )𝑤 and visual representationH(𝑙 )𝑣 mainly involve the
following steps:

Intra-modal Fusion. Self-attention[21] is employed to generate
the contextual representation of each modal. Formally, the textual
contextual representation C(𝑙 )𝑤 is calculated as follows:

C(𝑙 )𝑤 = 𝑆𝐴(H(𝑙−1)𝑤 ,H(𝑙−1)𝑤 ,H(𝑙−1)𝑤 ) (1)

where 𝑆𝐴(Q,K,V) is a multi-head self-attention function taking
a query matrix Q, a key matrix K and a value matrix V as inputs.
Similarly, the visual contextual representation C(𝑙 )𝑣 is generated as:

C(𝑙 )𝑣 = 𝑆𝐴(H(𝑙−1)𝑣 ,H(𝑙−1)𝑣 ,H(𝑙−1)𝑣 ) (2)

Inter-modal Fusion. Cross-attention[20] is applied to gather the
cross-modal semantic information between two modalities. For-
mally, the fused representation R(𝑙 )𝑤 of text is generated as:

R(𝑙 )𝑤 = 𝐶𝐴(C(𝑙−1)𝑤 ,C(𝑙−1)𝑣 ,C(𝑙−1)𝑣 ) (3)

where 𝐶𝐴(Q,K,V) is a multi-head cross-attention function. Simi-
larly, the fused representation R(𝑙 )𝑣 of visual is generated as:

R(𝑙 )𝑣 = 𝐶𝐴(C(𝑙−1)𝑣 ,C(𝑙−1)𝑤 ,C(𝑙−1)𝑤 ) (4)

For simplicity, the descriptions of layer normalization[1] and
residual connection[9] are omitted in the above description.

Then, the position-wise feed forward networks (𝐹𝐹𝑁 )[21] are
adopted to generate the final textual representation H(𝑙 )𝑤 and final
visual representation H(𝑙 )𝑣 as the output of 𝑙-th fusion layer :

H(𝑙 )𝑤 = 𝐹𝐹𝑁 (R(𝑙 )𝑤 ) (5)

H(𝑙 )𝑣 = 𝐹𝐹𝑁 (R(𝑙 )𝑣 ) (6)

Meanwhile, H(𝑙 )𝑤 and H(𝑙 )𝑣 also will be the input of the (𝑙 + 1)-th
fusion layer. By this layer-by-layer iteration, MMI gradually learns
the accurate image and text representations in the text-image shared
latent semantic space.

3.2 De-bias Contrastive Learning
3.2.1 Hard Sample Mining Strategy. As we know, contrastive learn-
ing can effectively narrow the distance between positive samples
and widen the distance between negative samples. Thus, the con-
struction of negative samples will directly affect the performance
of contrastive learning.

At the same time, we notice a high quantity inconsistency be-
tween visual objects and entities in MNER datasets. According to
our data analysis, 65.73% and 65.01% text-image pairs have more
visual objects than entities in the two datasets, and we observe
that visual object densities tend to be higher in these data. When
too many visual objects in the image are not conducive to the pre-
cise alignment between text and image. Based on this observation,
to effectively alleviate the bias in quantity, we consider whether
these text-image pairs with high visual object density can be used
as negative samples in contrastive learning. However, the nega-
tive samples of standard contrastive learning are constructed by
combining images and texts with different pairing relationships in
the same batch. Since the model also needs to be trained for the
NER task, we cannot purposefully select batch data with a specific

feature distribution. Therefore, different from existing contrastive
learning methods, we consider selecting some samples with high
visual object density from random samples as hard samples. This
way, we can get the hard negative samples for contrastive learning
to alleviate the quantity bias.

Figure 3: Random Samples and Hard Samples for Contrastive
Learning. (The size of the dot represents the density of visual
objects.)

Specifically, we take the text-image pairs fused by the MMI
module as the input for de-bias contrastive learning. Since these
text-image pairs in each batch are randomly sampled, we call these
text-image pairs random samples, denoted as (R𝑟

𝑤 ,R𝑟
𝑣).

After this, first, we detect the visual objects in each input image
via the pre-trained object detection model[8], and calculate visual
object density based on the number 𝑛 of detected objects and the
size 𝑝 of images, denoted as 𝐷 = (𝑑0, 𝑑1, ..., 𝑑𝑛−1), where 𝑑 = 𝑛/𝑝 .
As shown in Figure 3, each dot represents an image, and its corre-
sponding text is omitted. The size of the dot represents the visual
object density of an image. Thus, the larger the dot, the higher the
visual object density. Then, to select hard samples with high visual
object density, we sort the dots from largest to smallest, and take
the largest N of them as our hard samples Rℎ

𝑤 ,Rℎ
𝑣 .

Algorithm 1: Hard sample mining strategy
Input: random samples: (R𝑟

𝑤 ,R𝑟
𝑣)

Output: hard samples: (Rℎ
𝑤 ,Rℎ

𝑣 )
1 (Rℎ

𝑤 ,Rℎ
𝑣 ) ← {};

2 𝐷 ← {};
3 for ( R𝑟

𝑤 ,R𝑟
𝑣)𝑖 in (R𝑟

𝑤 ,R𝑟
𝑣) do

4 {𝑜𝑏 𝑗} ← 𝑂𝑏 𝑗𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛((R𝑟
𝑣)𝑖 ) ;

5 𝑛 ← 𝐶𝑜𝑢𝑛𝑡 ({𝑜𝑏 𝑗}) ;
6 𝑝 ← 𝐺𝑒𝑡𝑆𝑖𝑧𝑒 ((R𝑟

𝑣)𝑖 )) ;
7 𝑑 ← 𝑛/𝑝 ;
8 𝐷𝑖 ← 𝑑 ;
9 end

10 (R𝑟
𝑤 ,R𝑟

𝑣)𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝑆𝑜𝑟𝑡 ((R𝑟
𝑤 ,R𝑟

𝑣), 𝐷) ;
11 (Rℎ

𝑤 ,Rℎ
𝑣 ) ← 𝐹𝑖𝑟𝑠𝑡𝑁 (R𝑟

𝑤 ,R𝑟
𝑣)𝑠𝑜𝑟𝑡𝑒𝑑 ) ;

12 return (Rℎ
𝑤 ,Rℎ

𝑣 )
Themain process of hard sample mining is shown in Algorithm 1,

where𝐺𝑒𝑡𝑆𝑖𝑧𝑒 means to return the input image size,𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝑆𝑜𝑟𝑡
means to sort the former according to the latter in descending order,
𝐹𝑖𝑟𝑠𝑡𝑁 means to return the first 𝑁 values from the input.
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Based on the above hard sample mining strategy, we obtain
the hard samples, an extension of random samples. Since the hard
samples are selected from random samples, in essence, the weight
of contrastive learning on these selected samples (text-image pairs
with high visual object density) is enhanced.

Finally, these hard samples will be input into the contrastive
learning module with random samples to get their contrastive learn-
ing loss. In this way, the MMI module is optimized to learn a better
text-image shared latent semantic space, and the bias caused by
quantity inconsistency can also be alleviated.

3.2.2 De-bias Contrastive Learning Loss. By observing the features
of text-image pairs in the MNER dataset, we found that many texts
often contain multiple different entity types. In contrast, the visual
objects in corresponding images may only contain one or part of
these entity types, and other images in the same batch may contain
the remaining types. In such cases, some text-image pairs that are
actually positive samples are wrongly regarded as negative samples,
which will inevitably negatively impact contrastive learning. We
call this the bias in entity type.

To effectively alleviate this bias, we notice that constructing
specified hard samples for contrastive learning is unsuitable be-
cause it is difficult to obtain accurate image type labels. Therefore,
we consider addressing the bias from the perspective of the loss
function. Specifically, our proposed de-bias contrastive learning
adopts a debiased contrastive loss [5] to replace the standard con-
trastive loss(NTXent)[3]. The key idea of the debiased contrastive
loss is to indirectly approximate the distribution of negative sam-
ples, which corrects the sampling bias of negative samples even
without knowing the true type labels.

During each training step, we construct mini-samples of size
𝑁 , and take text-image pairs in samples as negative examples of
each other. In this way, we can create large volumes of positive
examples X+ and negative examples X− for each text-image pair.
Each data point is trained to find its counterpart among (2𝑁 − 2)
in-batch negative samples. Then the loss function for a positive
pair of examples is defined as:

L (X+,X− ) = − log
∑
𝑥∈X{+} 𝑓 (𝑥)∑

𝑥∈X{+} 𝑓 (𝑥) +
𝑄
𝑁

∑
𝑥∈X{−} 𝑓 (𝑥)

(7)

where 𝑓 (𝑥) means 𝑒𝑥𝑝 (𝑑 (𝑥)/𝜏) and 𝑑 (·) indicates the cosine sim-
ilarity function, 𝜏 denotes the temperature parameter. 𝑄 is the
weighting parameter, and N is the number of negative samples.

Finally, we average all 𝑁 in-batch classification losses to obtain
the final contrastive loss.

As shown in Figure 4, in the case of an accurate selection of
negative samples, compared with the latent semantic space before
contrastive learning, the distance between the positive pairs is
closer, and the distance between the negative pairs is relatively
farther. However, when the selection of negative samples is inac-
curate, standard contrastive learning tends to pull them away, as
shown in Figure 4. In contrast, contrastive learning based on the
debiased contrastive loss can be closer to the real situation without
pulling the wrong negative samples away, as shown in Figure 5.
It effectively alleviates the bias caused by unreasonable negative
samples, that is, the bias in entity type mentioned above.

Figure 4: Contrastive learning when negative samples are
accurate. (Green means semantically relevant and red means
semantically irrelevant.)

Figure 5: Contrastive learning when negative samples is in-
accurate. (Green means semantically relevant and red means
semantically irrelevant.)

Based on the two sets of samples (R𝑟
𝑤 ,R𝑟

𝑣) and (Rℎ
𝑤 ,Rℎ

𝑣 ) by
randomly sampling and visual object density guided hard sample
mining in the previous section, as described above, we construct
two sets of positive and negative examples, denote as (X+𝑟 ,X−𝑟 ) and
(X+

ℎ
,X−

ℎ
), and calculate their contrastive learning loss separately:

L𝑐𝑙_𝑟 = L (X+𝑟 ,X−𝑟 ) (8)

L𝑐𝑙_ℎ = L (X+
ℎ
,X−

ℎ
) (9)

To sum up, with the proposed hard sample mining strategy and
the adopted debiased contrastive learning loss, we can accurately
optimize the learning of latent semantic space and alleviate the bias
in quantity and entity type to improve the implicit alignment.

3.3 NER Decoder
Since visual information has been incorporated into textual repre-
sentation via the MMI module enhanced by contrastive learning,
we introduce a decoder to perform conditional sequence labeling
on textual representation.

It has been shown that Conditional Random Fields (CRF) have
the ability to mine information from semantic space for sequence
labeling and have played a good role in many MNER tasks[14,
23, 25–27]. Therefore, it is considered as our NER decoder and
computes the prediction loss simultaneously with the debiased
contrastive loss. Before decoding, we additionally introduce the
image types identified by the pre-trained model[18] to optimize the
final prediction.
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The final loss of the DebiasCL can be expressed as the weighted
sum of 𝐿𝑜𝑠𝑠𝑁𝐸𝑅 , 𝐿𝑜𝑠𝑠𝐶𝐿_𝑟𝑎𝑛𝑑𝑜𝑚 and 𝐿𝑜𝑠𝑠𝐶𝐿_ℎ𝑎𝑟𝑑 :

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑁𝐸𝑅 + 𝜆1𝐿𝑜𝑠𝑠𝐶𝐿_𝑟𝑎𝑛𝑑𝑜𝑚 + 𝜆2𝐿𝑜𝑠𝑠𝐶𝐿_ℎ𝑎𝑟𝑑 (10)

4 EXPERIMENT SETTING
4.1 Dataset
Following previous works in MNER[14, 23, 25–27], we take 𝑃𝑟𝑒.,
𝑅𝑒𝑐. and 𝐹1 as our main evaluation metric and conduct experiments
on the two MNER datasets (i.e., Twitter-2015 and Twitter-2017),
which are respectively provided by Zhang et al.[27] and Lu et al.[14].
The entity types include "Person", "Location“, ”Organization“ and
”Misc“. The tagging schema is BIO[19]. Moreover, a default image
is leveraged to replace the missing images in Twitter 2017, like
Zhang et al.[26]. Two datasets are divided into training, develop-
ment and testing parts following the same setting as Yu et al.[25].
Table 1 shows the number of entities for each type and the counts
of multimodal tweets in detail.

Table 1: The Statistics Summary of Two Twitter Datasets.

Entity Type Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178
Organization 928 247 839 1674 375 395
Miscellaneous 940 225 726 701 150 157

Total 6176 1546 5078 6049 1324 1351

Num of Tweets 4000 1000 3257 3373 723 723

4.2 Baseline Methods
Different from Yu et al.[25] and Zhang et al.[26], wemainly compare
three groups of baseline systems with our approach.

The first group contains several representative text-based NER
approaches:

• CNN-BiLSTM-CRF[15]: It is a classical neural network for
NER based on CNN and LSTM.
• HBiLSTM-CRF[11]: It is an improvement of CNN-BiLSTM-
CRF, replacing the bottom CNN layer with the LSTM layer.
• BERT[6]: It is a BERT-based model with a softmax layer for
entity prediction.
• BERT-CRF: It is a variant of BERT replacing the softmax
layer with a CRF layer.

The second group contains several competitive implicit alignment-
based multimodal approaches for MNER:

• VG[14]: It utilizes a visual attention and a gate mechanism
to mine implicit information from the global image to enrich
word representation based on HBiLSTM-CRF.
• ACoA[27]: It designs an adaptive co-attention network for
learning the shared implicit semantics between text and
global image based on CNN-BiLSTM-CRF.

• UMT[25]: It extends Transformer[21] to obtain both image-
aware word representations and word-aware visual represen-
tations, and incorporates an auxiliary entity span detection
module to alleviate visual bias.

The three group contains several competitive explicit alignment-
based multimodal approaches for MNER:
• OCSGA[23]: It incorporates object-level visual information
with textual representations for explicit alignment.
• AGBAN[28]: It explicitly extracts entity-related features
from both visual objects and text, and combines adversarial
training to fuse two different representations.
• IAIK[2]: It explicitly introduces image attributes and knowl-
edge to help improve named entity extraction.
• UMGF[26]: It is the state-of-the-art approach for MNER,
which exploits the explicit semantic correspondences by a
unified text-image graph that takes visual objects and words
as nodes.

4.3 Parameter Settings
Our model is implemented by the PyTorch framework. We set the
maximum length of text input and batch size to 128 and 16. In
our approach, the word embeddings are initialized by the uncased
𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 [6] with a dimension of 768. The visual embeddings are
initialized by 𝑅𝑒𝑠𝑁𝑒𝑡152 with a dimension of 2048. After the pro-
jection head, the dimension of each modality is transformed into
200. To better learn the text-image shared latent semantic space,
like UMGF[26], our heads of multi-head attention and number of
layers in the MMI module are set to 8 and 12, the latter is double
that in UMGF.

Based on best-performed development results, The learning
rate of the BERT, the MMI module and other parts are respec-
tively set to 5e-5, 1e-4, and 0.1. The temperature parameter of
our de-bias contrastive learning is 10. The ratio between 𝐿𝑜𝑠𝑠𝑁𝐸𝑅 ,
𝐿𝑜𝑠𝑠𝐶𝐿_𝑟𝑎𝑛𝑑𝑜𝑚 , 𝐿𝑜𝑠𝑠𝐶𝐿_ℎ𝑎𝑟𝑑 is 1:1:2. There are only two param-
eters that differ on two datasets. The dropout rates of the MMI
module are 0.2 and 0.25, and the numbers of hard samples 𝑁 in
Section 3.2.1 are 4 and 5. Other parameters are the same and set
by the development. The source code of this paper can be found in
https://github.com/xinzcode/DebiasCL.

5 RESULTS AND DISCUSSION

Table 2: The Proportion of Inconsistent Data in Two Twitter
Datasets.

Data Twitter-2015 (%) Twitter-2017 (%)
𝑁𝑜 < 𝑁𝑒 𝑁𝑜 = 𝑁𝑒 𝑁𝑜 > 𝑁𝑒 𝑁𝑜 < 𝑁𝑒 𝑁𝑜 = 𝑁𝑒 𝑁𝑜 > 𝑁𝑒

Train 19.15 13.51 67.34 18.98 16.90 61.12
Dev 21.05 14.14 64.81 17.30 14.50 68.20
Test 19.32 15.60 65.08 20.81 16.49 62.70

Total 19.84 14.42 65.74 19.03 15.96 65.01

Overall 85.58 ( 𝑁𝑜 ≠ 𝑁𝑒 ) 84.04 ( 𝑁𝑜 ≠ 𝑁𝑒 )
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Table 3: Performance Comparison on Two TWITTER Datasets.

Modality Methods
Twitter-2015 Twitter-2017

Single Type (𝐹1) Overall Single Type (F1) Overall
PER. LOC. ORG. MISC. 𝑃𝑟𝑒. 𝑅𝑒𝑐. 𝐹1 PER. LOC. ORG. MISC. 𝑃𝑟𝑒. 𝑅𝑒𝑐. 𝐹1

Text

CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37
HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37
BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44

Text+Image

VG 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87
ACoA 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15
UMT 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
OCSGA 84.68 79.95 56.64 39.47 74.71 71.21 72.92 - - - - - - -
Object-AGBAN 84.75 79.41 58.31 40.72 74.13 72.39 73.25 - - - - - - -
IAIK 84.28 79.42 58.97 41.47 74.78 71.82 73.27 - - - - - - -
UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
DebiasCL(Ours) 85.97 81.84 64.02 43.38 74.45 76.13 75.28 93.46 84.15 84.42 67.88 87.59 86.11 86.84

5.1 Data Inconsistency Analysis
Since we cannot obtain accurate entity type information for each
image, we only analyze the quantity inconsistency proposed in
Section 1 in our experiments. Specifically, we obtain the number of
visual objects in the image and the number of entities in the text
by object detection and text labels. The condition for judging the
quantity inconsistency is that: the number of visual objects (𝑁𝑜 ) in
the image is not the same as the number of entities (𝑁𝑒 ) in the text.

As shown in Table 3, we calculated the proportion of 𝑁𝑜 <, = and
> 𝑁𝑒 . We can see that the proportion of inconsistent data in the two
datasets reaches 85.58% and 84.04%. Therefore, it is necessary to
alleviate the bias caused by the inconsistency of quantity. Moreover,
we can see that the data of 𝑁𝑜 > 𝑁𝑒 accounts for most of them.
Therefore, handling the data with high visual object densities is
necessary.

5.2 Overall Experimental Results
We mainly report the metric 𝑃𝑟𝑒., 𝑅𝑒𝑐. and 𝐹1 for every single type
and overall on two benchmark MNER datasets. Table 3 shows the
performance comparison of different competitive uni-modal and
multimodal approaches. From this table, we can see that:

1) For the uni-modal approaches, BERT-based approaches per-
form better than the CNN and LSTM apparently in 𝑃𝑟𝑒., 𝑅𝑒𝑐. and
𝐹1. It indicates the obvious advantages of BERT as a text encoder in
NER. Regarding the single type and overall results of both datasets,
BERT-CRF with CRF decoding performs better than BERT except
for the metric 𝑅𝑒𝑐.. It shows the effectiveness of CRF as the NER
decoder.

2) Comparedwith uni-modal approaches, multimodal approaches
generally achieve better performance, proving that visual informa-
tion is helpful for entity recognition. The most recent approach
UMGF performs much better than all multimodal implicit and ex-
plicit alignment approaches. The performance gains mainly come
from the following reasons: First, UMGF, a recent representative of
explicit alignment approaches, utilizes a graph to represent words
and visual objects tomodel explicit alignment relationships between

them. Then, UMGF leverages a graph-basedmultimodal fusionmod-
ule tomine the semantic correspondence for final entity recognition,
which helps to improve entity recognition performance.

3) Different from the explicit alignment approaches such as
UMGF, our proposed DebiasCL does not need to model the corre-
spondence between entities and visual objects explicitly. DebiasCL
combines MNER with de-bias contrastive learning to fully capture
global implicit semantic interaction between text and image, which
effectively alleviates the bias caused by visual objects. Compared
to the sota model UMGF which is a representative of explicit align-
ment, DebiasCL has an improvement of 0.43% and 1.33% overall on
two datasets, which proves that DebiasCL is effective for improving
the performance of MNER as an implicit alignment approach.

5.3 Ablation Study
To investigate the effectiveness of de-bias contrastive learning in
our DebiasCL architecture, we perform a comparison between the
full DebiasCL and its ablations concerning the hard samples (w/o
Hard CL), the entire de-bias contrastive learning module(w/o CL)
and the debiased contrastive loss(w/o Debias-loss)

Table 4 shows the results of DebiasCL and its ablated approaches.
First, we remove the hard samples in the de-bias contrastive learn-
ing module. We can see that performance drops on data where
𝑁𝑜 = 𝑁𝑒 and 𝑁𝑜 > 𝑁𝑒 in both datasets, especially in data where
𝑁𝑜 > 𝑁𝑒 , however, rises on the data where 𝑁𝑜 < 𝑁𝑒 . We speculate
this is because, after the introduction of hard samples, contrastive
learning is more fully optimized for the data with high visual object
density, and affects the performance of the data with low visual
object density. On this observation, when we further remove the en-
tire de-bias contrastive learning module, the performance all drops
significantly, indicating the usefulness of the proposed de-bias con-
trastive learning for improving MNER performance. In addition,
we replace the debiased contrastive loss with the standard con-
trastive loss in full DebiasCL, and we found that both 𝐹1 decreased,
which proves the help of introducing the debiased contrastive loss
to alleviate samples bias.
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Table 4: Ablation Study of DebiasCL on Different Data.

Methods Twitter-2015 (𝐹1) Twitter-2017 (𝐹1)
𝑁𝑜 < 𝑁𝑒 𝑁𝑜 = 𝑁𝑒 𝑁𝑜 > 𝑁𝑒 𝑁𝑜 < 𝑁𝑒 𝑁𝑜 = 𝑁𝑒 𝑁𝑜 > 𝑁𝑒

DebiasCL 74.45 75.49 74.98 84.47 88.76 86.31
DebiasCL w/o Hard CL 74.47 75.12 74.16 84.95 86.67 85.12
DebiasCL w/o CL 74.18 74.84 73.87 82.11 86.03 84.53
DebiasCL w/o Debias-loss 74.36 75.29 74.38 83.78 87.83 85.69

5.4 Parameter Sensitivity Study
In this section, we evaluate our model on different parameter set-
tings. We have mentioned in Section 3 that we pick up 𝑁 pairs in
batch-size random samples as hard samples. Since we select the
𝑁 as the batch size of hard samples according to the visual object
density from high to low, the value of 𝑁 directly affects the average
visual object density in hard samples. Therefore the value of 𝑁 is
noteworthy because it is crucial for alleviating bias.

Table 5 describes the results of our model influenced by different
values of 𝑁 . The results show that when the 𝑁 starts to increase
from a small size, the performance is poor, which indicates that
When there are too few negative examples, it is difficult to learn
useful features but noise. When the batch is set larger, there are
more hard negative samples, and the effect of learning improves.
We can see that DebiasCL achieved the best performance on both
datasets when the 𝑁 was set to 4 and 5. As 𝑁 becomes larger,
the proportion of visual objects in negative samples may decrease.
This results in that when 𝑁 exceeds a specific value, the effect of
learning will decrease. On the whole, The results above prove that
a proper batch size(𝑁 ) of hard samples can effectively help de-bias
contrastive learning to improve MNER performance.

Table 5: The Performance of DebiasCL When Hard Sample
Mining Takes Different 𝑁 .

𝑁
Twitter-2015 Twitter-2017

𝑃𝑟𝑒. 𝑅𝑒𝑐. 𝐹1 𝑃𝑟𝑒. 𝑅𝑒𝑐. 𝐹1

2 71.92 75.44 73.64 85.78 85.10 85.44
3 72.29 75.29 74.78 86.75 85.31 86.02
4 74.45 76.13 75.28 86.67 86.18 86.43
5 74.28 75.15 74.71 87.59 86.11 86.84
6 74.20 74.44 74.32 86.35 84.91 85.62

5.5 Case Study
Figure 6 shows the case study comparing our method with the
BERT-CRF[6] and UMGF[26]. Our method performs better in all
the cases due to the enhancement of de-bias contrastive learning.

First, from Figure 6 (a), we can see that according to the textual
modality only, BERT-CRF can correctly predict the entity type due
to its strong contextual learning. However, UMGF gives a wrong
identification of "Hollywood Walk of Fame". We speculate that this
may be influenced by the type of visual objects (people) in the
image. The graph-based UMGF mistakenly uses the visual objects
as graph nodes to change the type of entity in the text.

Figure 6: The Results of DebiasCL Compared with BERT-CRF
and UMGF.

Then, as shown in Figure 6 (b), both BERT-CRF and UMGF fail to
recognize "Bishop Chatard" in the text. BERT-CRF cannot predict
the type of "Bishop Chatard" based on the text alone, misjudging it
as PER. For the multimodal method UMGF, it cannot explicitly align
the "Bishop Chatard" and "Lawrence Central" with numerous visual
objects in the image. Different from the above two approaches,
DebiasCL successfully identified "Bishop Chatard" based on implicit
alignment, which effectively alleviates the bias in quantity.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel de-bias contrastive learning based
approach, which combines MNER with a cross-modal contrastive
learning to learn a text-image shared latent semantic space for im-
plicit alignment between text and visual representation. The vision
and language are bridged by the latent semantic correspondence.
To effectively alleviate the bias caused by visual objects in quantity
and entity types, we further propose a hard sample mining strategy
guided by visual object density, which can effectively deal with
the bias of quantity, and introduce a debiased contrastive loss to
alleviate the bias of entity types. Conducted on two benchmark
datasets, experimental results demonstrate that our proposed Debi-
asCL outperforms state-of-the-art methods.

For future work, we plan to investigate the data augmentation
method to obtain hard negative samples, which is another way to
mine implicit correspondence between vision and language.
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